

Carbon Footprint of Construction Equipment

Martijn IN'T VELD, Leonardo VERKOOIJEN,

Climate Neutral Group

Marijn BIJLEVELD, CE Delft

Please react on Twitter, @era_rental, #eraconvention2019

Project goal

To compare efficient and inefficient use of equipment

To demonstrate possible reductions in CO₂-emissions.

Generator

Electric articulating boom lift

Mast boom lift

Team

■ SGS Search – LCA

SGS SEARCH

■ CE Delft – Comparative analysis

CNG – Project management and verification

Special thanks to:

- Volvo
- JCB
- Atlas Copco
- JLG
- Haulotte
- Genie
- and all other contributors

Approach

Phase 1:

 Carbon Life Cycle Assessment, ISO 14040 & 14044 LCA standard

Phase 2:

- Definition of parameters
- Comparative analysis of parameters effects on selected products
- Use case scenarios and calculator

Various parameters determine the impact of use

Intensity of use

Energy consumption

Transportation: distance, load factor, vehicle type

Recycling (yes/no)

A calculation tool

SCENARIO 1

500 hours 6 years Efficient transport Efficient energy

SCENARIO 2

250 hours 8 years Inefficient transport Inefficient energy

Efficient use <-> inefficient use

SCENARIO 1

SCENARIO 2

What if...

Energy consumption

Difference:

 $2.1 \text{ kg CO}_{2-\text{eq}}/\text{hr}$

LUNCHTIME!

Energy consumption

Difference:

 $2.1 \text{ kg CO}_{2-\text{eq}}/\text{hr}$

At 500 h/yr

960 kg CO₂-eq

LUNCHTIME!

Transport

Truck size
Load factor
Distance

Transport

SCENARIO 1 SCENARIO 2

Truck size: 28 ton 7.5 ton

Average load factor: 80% 50%

Average distance: 30 km 50 km

Result per time of use 13 71 kg CO_2 -eq.

Transport

SCENARIO 1 SCENARIO 2

Truck size: 28 ton 7.5 ton

Average load factor: 80% 50%

Average distance: 30 km 50 km

Result per time of use

13

71

kg CO₂-eq.

Difference:

At 60 jobs per year: $3,500 \text{ kg CO}_{2-eq}/\text{hr}$

Hours of use

Impact of production
3,200 kg CO_{2-eq.}

	SCENARIO 1	SCENARIO 2	
Utilisation rate (h/yr)	500	250	
Years of (1st) use:	6	8	
Total hours of use:	3,000	2,000	
Impact of capital good per hour	s 1,1	1,6	kg CO _{2-eq.}

Hours of use

Earlier replacement by a 10% more energy efficient machine

Saves **1,800** kg CO_{2-eq} per year

Life cycle impact

Saves **29,000** kg CO_{2-eq}

in 6 years.

Conclusions

- Rental model generally increases efficient use, which can lead to large CO₂-benefits compared to inefficient use
- Shared use avoids production and can have a large CO₂-benefit
- But inefficient use can counteract these benefits.

What applies to your practice, your company? Do you know what applies to you?

Join us in the workshops, talk with us about efficient vs inefficient use, so we can sharpen different scenario's and parameters.

